☑ Машинное обучение

Цель программы: ознакомить слушателей с основами машинного обучения.

Программа курса:

Раздел 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. 
Логические методы: классификация объектов на основе простых правил. Интерпретация и реализация. Объединение в композицию. Решающие деревья. Случайный лес.

Раздел 2.  Метрические методы классификации. Линейные методы, стохастический градиент. 
Метрические методы. Классификация на основе сходства. Расстояние между объектами. Метрика. Метод k ближайших соседей. Обобщение на задачи регрессии с помощью ядерного сглаживания. Линейные модели. Масштабируемость. Применимость к большим данным Метод стохастического градиента. Применимость  для настойки линейных классификаторов. Понятие регуляризации. Особенности работы с линейными методами. Метрики качества классификации.

Раздел 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации.
Линейные модели. Масштабируемость. Применимость к большим данным Метод стохастического градиента. Применимость  для настойки линейных классификаторов. Понятие регуляризации. Особенности работы с линейными методами.

Раздел 4. Линейная регрессия. Понижение размерности, метод главных компонент.
Линейные модели для регрессии. Их связь с сингулярным разложением матрицы "объекты-признаки". Уменьшении количества признаков. Подходы к отбору признаков. Метод главных компонент. Методы понижения размерности.

Раздел 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети.
Объединение моделей в композицию. Взаимное исправление ошибок моделей. Основные понятия и постановки задач, связанные с композициями. Градиентный бустинг.
Нейронные сети. Поиск нелинейных разделяющих поверхностей. Многослойные нейронные сети и их настройка с помощью метода обратного распространения ошибки. Глубокие нейронные сети: их архитектурах и особенности.

Раздел 6. Кластеризация и визуализация.
Задачи обучения без учителя. Поиск структуры в данных. Задача кластеризации как задача поиска групп схожих объектов. Задача визуализации как задача отображения объектов в двух- или трехмерное пространство.

Раздел 7.  Прикладные задачи анализа данных: постановки и методы решения. 
Частичное обучение как задача, находящаяся между обучением с учителем и кластеризацией. Задача для выборки, в которой значение целевой переменной известно лишь для части объектов. Отличие задачи частичного обучения от рассмотренных ранее постановок. Подходы к решению.
Разбор задач из прикладных областей: скорринг в банках, страховании, задачи андеррайтинга, задачи распознавания образов.

По результатам программы слушатели будут обладать:

- Знанием принципов машинного обучения;
- Способностью проводить самостоятельный подбор классификаторов под конкретную задачу;
- Знанием механизмов линейной и логистической регрессий;
- Знанием методов машинного обучения без учителя;
- Способностью разработать собственную модель машинного обучения под конкретную прикладную задачу.  

 

  • Продолжительность обучения: 72 часа, включая 30 часов аудиторных занятий с преподавателем, 42 часа самостоятельного изучения материалов.
  • Форма обучения: очно-заочная, заочная.
  • Стоимость обучения: 40 000 рублей.
  • Начало занятий: Октябрь 2025 г. Идёт набор слушателей.

Договоры на обучение заключаются с физическими и с юридическими лицами.

Запись на курсы проводится по электронной почте hsmi-dopobr@mail.ru, через форму внизу на стринце сайта или по телефону  +7 (909) 982-37-37.

Язык преподавания: 
Русский

Записаться на обучение

Очный; дистанционный (видеоконференция); совмещенный, в зависимости от ситуации; ваш вариант
CAPTCHA
Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.