Моделирование и количественные методы анализа в бизнесе

Освоение курса связанно с изучением теоретических основ статистики, теории вероятностей и получением комплексных знаний по практическому использованию методов обработки и анализа информации в бизнес - среде. Изучение курса позволяет использовать полученные знания на практике при обработке первичных данных, представлении полученных результатов в виде таблиц, графиков, диаграмм, построении обобщающих показателей. На их основе обеспечивается возможность использования наиболее эффективных статистических и количественных методов и моделей в экономическом анализе, включая построение распределений, количественные методы оценки вероятностей, методы принятия решений в условиях неопределенности, методы построения доверительных интервалов, методы построения и оценки статистических гипотез.

В результате освоения программы слушатель сможет:

  1. Освоить программный инструментарий персонального анализа первичных данных, а именно форматы исходной информации, механизмы работы, методы интерпретации результатов.

  2. Изучить основные характеристики описательной статистики, методы их вычисления и интерпретации.

  3. Изучить методы количественного анализа неопределенности, способы классификации недетерминированных задач.

  4. Сформировать представление и навыки практического вычисления количественных характеристик процессов в условиях неопределенности.

  5. Освоить методы принятия решений в условиях неопределенности.

 

Курс проводится в двух вариантах: базовый и расширенный. Объем занятий в часах одинаковый.

Базовая программа подразумевает занятия и изучение материалов совместно со студентами магистратуры факультета. Расширенная программа - отдельная группа в рамках повышения квалификации.

 

Программа базового курса

Тема 1. Методы персонального анализа данных

  • Гистограммы, диаграммы рассеяния, временные ряды, сводные таблицы, обобщающие показатели, прямоугольные диаграммы, матрица парных корреляций.

Тема 2. Количественные методы теории вероятностей и математической статистики

  • Теория вероятностей. Основные правила теории вероятностей. Дискретные и непрерывные случайные величины. Математическое ожидание и дисперсия. Производные вероятностные распределения. Нормальные, биномиальные распределения. Многошаговые процедуры принятия решений в условиях неопределенности. Оценка стратегий (EMV). Дерево решений и его программная реализация (TreePlan).
  • Математическая статистика. Основная задача математической статистики. Понятие статистических оценок и их свойства. Оценка доверительных интервалов. Общий план анализа ситуаций в условиях неопределенности. Управление длиной доверительного интервала. Типовые статистические задачи. Проверка статистических гипотез.

 

Программа расширенного курса

Тема 1. Подготовка данных для статистического анализа

  • Общие методы контроля и предобработки данных (выявление пробелов, дубликатов, аномалий, нарушений требований входной формализации данных и т.д.). Демонстрация автоматизации процесса предобработки и консолидации данных. Методы построения статистических выборок (метод простых случайных выборок, систематический метод, метод стратификации, кластерный подход, многоступенчатые методы построения выборок).

Тема 2. Методы статистического анализа данных

  • Корреляционный анализ. Факторный анализ. Дискриминантный анализ. Совместный анализ.

Тема 3. Методы регрессионного анализа

  • Метод наименьших квадратов. Выбор независимых факторов. Выбор класса функций. Парная и множественная регрессия. Методы оценки значимости регрессионных коэффициентов. Оценка точности регрессионной модели. Статистические тесты адекватности модели. Методы линеаризации задач регрессионного анализа. Работа с нечисловыми данными (метод фиктивных переменных).

Тема 4. Методы Data Mining

  • Аналитическая отчетность и многомерное представление данных. Хранилище данных. Измерения и факты. Основные операции над кубом данных. Построение автоматизированных моделей анализа данных. Типы задач, решаемые методами Data Mining: классификация, кластеризация, регрессия, ассоциация, поиск последовательных шаблонов. Алгоритмы, получившие наибольшее распространение для каждого типа задач: самоорганизующиеся карты, деревья решений, линейная регрессия, нейронные сети, ассоциативные правила. Способы визуализации результатов исследований.

 

Категория слушателей (требования к слушателям) – среднее и/или высшее профессиональное образование. Сфера профессиональной деятельности – руководители компаний и подразделений, сотрудники корпоративных венчурных фондов, специалисты в области НИОКР, руководители проектов и продуктов, менеджеры по инновациям и изменениям, сотрудники аналитических отделов.

Продолжительность обучения – 72 часа (30 часов аудиторных занятий с преподавателем, 42 часа самостоятельного изучения материалов).

Форма обучения – очно-заочная, без отрыва от работы, начало занятий по рабочим дням в 18:30, по субботам в 10:00.

Формат занятий - очный, для участников из других городов, в случае невозможности очного посещения вы сможете подключиться к занятию через видеоконференцию.

Стоимость обучения в 2022-2023 учебном году - 32 000 рублей.

Начало занятий - осень 2022 года.

Договоры на обучение заключаются с физическими и юридическими лицами.

Запись на курсы проводится по электронной почте hsmi-dopobr@mail.ru (для физических лиц), vvp123@mail.ru (для юридических лиц) или через форму регистрации на сайте. Также вы можете обратиться для записи или с вопросами к администратору курса Мартьянову Антону по WhatsApp или Telegram по номеру +79264827721.

Телефон деканата факультета: +74959328073

Информация обновлена: 01.07.2022

 

Program size: 
72 часа (30 часов аудиторных занятий с преподавателем, 42 часа самостоятельного изучения материалов)
Duration of studies: 
3-4 недели
Mode of attendance: 
Intra-extramural
Language of study: 
Russian
Issue documents: 

Удостоверение о повышении квалификации Высшей школы управления и инноваций (факультета) МГУ имени М.В.Ломоносова

Head of the program: 
д.т.н., профессор Косоруков Олег Анатольевич
Lecturers: 

Косоруков Олег Анатольевич

Заместитель декана по науке
Профессор Высшей школы управления и инноваций

Руководитель программ магистратуры "Инноватика"

Образование:  

1983г. - с отличием окончил факультет Вычислительной математики и кибернетики МГУ им. М.В. Ломоносова, кафедра "Теории игр и исследования операций".

1985г. - аспирантура факультета Вычислительной математики и кибернетики МГУ им. М.В. Ломоносова,  защитил кандидатскую диссертации на тему "Задачи анализа и синтеза на коммуникационных сетях" .

2007г. -  защитил докторскую диссертацию на тему «Модели и методы управления сетевыми структурами в кризисных ситуациях».

Common materials: 

Записаться на обучение

Очный; дистанционный (видеоконференция); совмещенный, в зависимости от ситуации; ваш вариант
CAPTCHA
Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.